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PainleG cl1 in his book Lecturer on Friction showed that the addition 
of dry friction forces does not alter the stability of equilibrium states 

of mechanical systems, for which the potential energy at the equilibrium 

state’ has an isolated minimum. III k!] and [g] a problem of stability of 

stationary motions of some particular mechanical systems with drg fric- 

tion has been investigated: Some properties of the systems were deter- 

mined such that the addtion of the dry friction forces does not effect 

the stability of the motion, provided that the agatema are Stable when 

subjected to the action of potential forces only. In [21 and [Sl, however, 
only such frictional forces are considered which appear during the 

sliding of the surfaces and which result in constant moments f B, inde- 

pendent from the normal forces (the forces are acting in the opposite 

direction to the relative sliding velocity). Such a model of dry friction, 

obviously, differs from the classical Coulomb model. It BST, however, 

serve as a step toward the study of the problem in its classical formula- 

tion. The present paper is devoted tc such a studg. 

1. Consider a mechanical system subjected to stationary holonomic 

ideal constraints with the coordinates ql, . . . , q,,+ c+ 1, and to non, 
holonomic scleronomous (dAij/dt = 0) ideal constraints 

Ai& +... + &.n+k+r qn+k+l = 0 (i = i, . . . , k) 

with admissible displacements 

Adq, + . . 6 + &n+k+&?n+,+k = 0 . (i = i. . . . ) k) 

Let on the system be imposed some releasing constraints with dry 
friction 

%I+1 < 0, l c *, Qn+l f 0 
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If these inequalities reduce to equalities, then the bodies, or the 
points of the system, or external surfaces are sliding over other bodies 
of the system or over the external surfaces. Moreover, the frictional 
force remains proportionalto the normal reaction Ni > 0 and is acting 
in the opposite direction to the sliding velocity (/Vi > 0 if the bodies 
are pressing on each other), 

Let us select at each contact point of one body three axes fixed on. 
this body. Let the axis ti be directed along the external normal and the 
axes xi and yi complete a right-handed, orthogonal system of coordinate 
axes. 'Ibus, the work of the reaction Ni and the frictional force along 
the allowable displacements 6xi, 6yi, 6Zi of the points of the second 
body in this reference frame will be 

where viz and v ir are x- and y-components of the relative velocity vector 
vi and ki > 0 are friction coefficients. 

In all subsequent considerations we shall not mention the fact that 
for the determination of the position of a system it is necessary to 
specify n + 1 + k coordinates, although for the dete~nation of the dis- 
tribution of the velocities, it is necessary to specify only n + I velo- 
cities. We shall also consider, without stating it explicitly, that all 
coordinates can be subjected to arbitrary excitations, although, perhaps, 
the length of the trajectory along which a system can be transferred 
from the initial state to a given excited state, remains bounded from 
below with the unlimited decrease of the amplitudes of some initial 
excitations. 'Ibis can occur because of the existence of nonholonomic con- 
straints. Such an assumption is necessary in view of the fact that we 
are not considering either the causes or the duration of the process of 
the build up of the excitation. We do not register therefore these 

assumptions in the indices, which simplifies the notation. 

Let the allowable displacements Sxi, 6yi, 6zi be expressed by the in- 
dependent displacements 6q,, 6q,, . . . . Sq,,, I as follows 

where index i varies over all contact points, and the last expressions 
do not contain Sq,, ..,, 69, since all 62, = 0 for 

+n+j = Qn+j = in+j = 0 (j=ni1,...,nfl) 
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The velocities Uix and v. , being independent of time, are expressed 

in Q1, . . . . 4,+ l by simila:'formulas: 

uix = a&q, + - . - + qn+l Qn+l 

vi, = u;$i + . . . + u&+lPn+l 

Gz = q~+lqn+l + * . - + qn+l hn+l 

Let us consider first the systems with a complete dissipation, i.e. 
for which the velocities viz and v iy reduce to zero when Q1=...=Qn=O. 

Consider thus a system with the initial conditions d1 = Q,,+ I = 0; 
qi+l = . . . = q$++ - 0. ‘Ihe components of the frictional forces Ril and 
R. 
silh 

in these initial conditions at equilibrium could be arbitrary, but 
that their magnitudes \I(RiL2 + Riy2 ) should not exceed kiNi. lhe 

system remains in equilibrium if the sum of all virtual works of active 
forces Qi (independent of t and continuous), of the frictional forces 
and positive normal reactions Ni can be made, by a proper selection of 

Ri, and Riy, equal to zero for any virtual displacement of the system, 

(Riz andR. must be the same for any virtual displacement). 'Ihereby the 
following &t be satisfied 

Qi' f OR*: u~j + R*,u~~ + Nt u~j = 0 (i = 1 7.S.) n + 1) 
i 

(l-1) 

where Qj ' is the generalized force from the Appell equations [4], corre- 
sponding to the nonholonomic variable tjj. 

It may occur that in (1.1) there are more unknowns than the equations. 
In this case we shall impose on the solutions of these equations addi- 
tional conditions which guarantee equilibrium. 

1. Equations (l.l), (together with some additional hypothesis about 
the properties of Ni), can be satisfied only by the positive normal re- 
actions. 

2. For an arbitrary system of normal reactions Ni > 0 it is possible 
to determine a system R,,, R. such that all R,,, 
will satisfy (l.l), and Riz2t: Riy2 < ki2Ni2. 

Riy and Ni together 

A natural additional hypothesis about the distribution of the normal 
forces may follow for instance, from the following considerations. A 
rigid body pressing on a rough horizontal flat surface in the form of a 
regular polygon exerts on this surface uniformly distributed force, 
directed down, if the mass of the body is synvsetrically distributed 
about the vertical line passing through the geometrical center of the 
flat surface. Let now the additional mathematical hypothesis be expressed 
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in the form of equalities or inequalities as follows 

where \Y, and q5, are continuous functions of their arguments, moreover, 
the arbitrary quantities Ni, Rix and Ri, determined from the equalities 
in (1.2) are continuous functions of the remaining arguments of 4,. In 
the sequel we shall assume, without stating explicitely, that these re- 
lationships are attached to the equations of motion or equilibrium. If 
the initial conditions 4;; . . . . qi+ I+ k are such that for arbitrary 

Ni > 0, it is possible to find RiSz + Rfy2 < k.2Ni2, then clearly, the 
same properties will obtain in some r-nelghborl&od of the initial con- 
ditionsgio 

n+k+i 

icl i=l 

Let the initial conditions be such that some, and not all, relative 
velocities are zero. Among the nonzero velocities there exist u, and not 
more independent among themselves velocities, ul, .,., v,. Let ul, . . . . 
us represent a complete system of nonholonomic coordinates, independent 

for 4;) n$+ t; es+]. = d,, z = 0. Let now S be the acceleration energy 
of the system de~nding on t + n coordinates vl, . . . . va, v,+ 1, . . . . 

',+I# and their time derivatives, and let ~j be generalized force cor- 
responding to these coordinates. 

The equations of motion then are 

where the first sum is extended over all contact points with nonvanish- 
ing Vi; the second sum over all contact points with vanishing Vi, and 
the third over all points. In what follows we shall always presuppose 
the above and we shall not indicate to the ranges of variation of the 
index i. 
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Solving (1.3) for cc+ i, . . . . ir,,, ii,+ 1, .,., a,,, I and equating the 
results to zero, we get 

+ ~ (R~~j + Ri~Be + ~NNts~j)l = O (p= o+ I,..., n+J) (1.4) 

where S, = 6,il, + . . . + an+ l6n+ 1 is a part of S linear relative to fi.. 
J 

If the system (1.4) together with the hypothesis (1.2) could be 
satisfied only by a system Ni, Rix and Riy subjected to the inequalities 
kiNi’ > d( Rix2 + Riy2) then fb+ 1, . . . , ir,, k+ 2 are zero and ir,, . . . , 
ug are found from 

These quantities will be determined uniquely if and only if, all 
linear combinations Ni > 0 appearing on their right-hand side, are deter- 
mined uniquely from (1.4) and (1.2). 

A situation is more complicated if it is impossible to satisfy all 
inequalities 

In such cases the assumption ids+ i = . . . = 6, = 0 has to be dropped, and 
substituted by the assumption that sane of the relative accelerations 

Uq+l, ...# i’,, are different from zero and that in these points the 
frictional forces are directed opposite to the relative accelerations 
and equal to kfli. 

If it is possible to satisfy the equations 

(where the second sum is extended over the points with 
fil) it is possible to satisfy the accelerations 6,,+ 1 

. 
V,+l = . . . = *a+ J = 0, and also only the reactions 

nonvanishing fin’ 
= . . . = G,= 
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(at the : points with fiix = Cir= O), then CY+l = . . . = ir = 0, and G,, 
**., vy obtained from these equations will constitute anna~issible 
system ES]. It is interesting to note that for an arbitrary admissible 
system ir,, . . . . Cy, the function 

can have only positive values. 
we obtain 

For, multiplying (1.4) by ~j and adding, 

252 = n-2 0 

where S, > 0, a part of S, is quadratic in ci. Function II can be inter- 
preted as %ork*' of all active forces, frictional forces, snd of a part 
of the inertial forces applied to the system on its actual acceleration. 
Another part of the inertia forces constitute inertia forces which would 
be applied to the system if it were acted upon by the active forces for 
which the accelerations iri would vanish. 

Let US now analyze all systema with initial conditiona qi~, vi such 
that the absolute values of the velocities vi are sufficiently small and 
have the following properties: 

a) For gig = 0, vi = 0 the following inequalities are satisfied 

kill > J”“Rti’ + Rc 1 8’ 

where Ni and R, are the solutions of (1.1). 

b) For arbitrary small 1 vii f 0, 1 xi\ # 0, the new reactions R’i%, 
R’ . and N,', 
saXsfy 

which are the solutions of any of the variants of (1.31, 

kiNi’ > VR’iE + R’i”y - 6’ V-5) 

kiNi’ > vRi; + Ri; - 6’ (1.6) 

where S' > 0 is a small constant quantity. 

If it is impossible to determine either Ni, Ni' or R!', RI uniquely, 
then we shall consider, that for an arbitrary system N, it is possible 
to determine a system R,,, R. which will satisfy inequality (1.5). 
Mechanically this means that'the normal reactions, at the beginning of 
the sliding with small velocity, vary from their static values continu- 

ously or make sufficiently small jumps. 

The region of the initial values satisfying (a) and (b) above we 
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shall call, following EUgakov [61, the region of stagnation. We shall 
prove below a theorem, which will also justify the terminology used here. 

Theorem. An arbitrary equilibrium state inside of the stagnation 
region is stable, and an arbitrary excited motion about this equilibrium 
state, possessing an arbitrary small kinetic energy, will cease after a 
finite period of time. 

It is easy to note that each point of the stagnation region Qi", Qi" 
is an interior point of the region, and thus, there exist a spherical 

neighborhood 

of such point consisting entirely of the stagnation points of the region. 
For the left sides of any of the equations which serve to prove that a 
given point is a point of a stagnation region, depend in a continuous 

manner on Qi, Qi, and the inequalities in the condition (a) and (b) con- 

tain some additional reserve 6'. 

Let us now consider any system of initial displacements and velocities 

I3 hi - @)” + &” = &*2 + Q2) < h > c) 

For sufficiently small X this motion could be considered as being 
excited about its'initial equilibrium state qi’, and further discussion 
could be conducted considering the excitations of the velocities only. 

From the theorem of the variation of the kinetic energy T we have 

From (1.1) and (1.3) we obtain 

$T = B(E(i, V& + R~v~U - kiNi’ J’w)- 26 Qj'vj 

We shall prove now that 

z(Rixvix + Riuvig - kd’i’ VV$ + Vii)- ZjsQj'vj < - 9 J’T’ (1.7) 

in some region Sxi2 + vi2 =G R, < R, where B > 0 is some constant, which 
can be chosen independently from R, if only IR, 1 is sufficiently small. 

E&h term of (1.7) is negative in the region R, since 
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Here Qi, is a generalized force corresponding the coordinate vix, etc. 
Squaring both sides, we obtain 

For the Sylvester conditions for this quadratic form in vix and viy, 
in sufficiently small R,, reduces to \/( Ri,’ + R. ‘) Q k,N, - a’, i.e. 
to (1.6) since “Qi, is arbitrary small because o the continuity of Qj. Y 

Consider naw lower limits of kiNi, denote them by (kiNi)‘, and let pi 
denote the upper limits of the moduli of 8Qi in R,. ‘Ihe function 

clearly exceeds the left side of (1.7). It is a homogeneous function of 
first order in vi. Consequently, if y is its negative maximum on the 
sphere R,, then everywhere in R, 

-fD>+-+l/v,2+...+vn~ 

Obviously, there exist always such R > R,, that for arbitrary Xxi2 + 
vi2 < R, the following inequality is valid 

j.f/T < u’ Jfv: + . . . + v,2 

moreover, 0 < u = const is independent of R,. ‘lhs 

which completes the proof. 

Hence 

;T<- 8 JCT in the region 3 xt + v,2< R1 

If X is sufficiently small then T’ is arbitrarily small, therefore, 
for an arbitrary variant of the equations of motion 

j,JT - t/T’- < ej2 (t - tn) 

It is seen from t4e last equality that the motion is asymptotically 
stable relative to the velocities, and it, will necessarily cease after 

some interval of time bounded above by L(h) > 0. 
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It is also easy to demonstrate, that there exist such a constant 
Z(h) > 0 that the raoduli of all vi satisfy 

/Vi 1 <f [J@-8/2(t -&))I 

From the last inequalities we obtain the following evaluation 

2 1 zi 1 <I’ IV?” (t - t,) - e/4 (t - t$ + C] 

where I’ > 0, C > 0 are some constants. All these evaluations art valid 
as long as the motion is in progress, and it follows that the initial 
equilibrium is stable. 

2. Consider now a system with a partial dissipation. Let vl, . . . . v=, 
o < n be independent among all tr ir, v . , and let the frictional forces do 
no work along the admissible displac&ts 6q,+l, . . . . 8q,. We also 
assume that the equations expressing nonholonomic constraints are linear 
in vl, . . . . urn. 

As nonholonomic coordinates take 

. . 

%r * * * 9 218, Qrrflr * - - 1 4th &l+,,* ‘ *, %+t 

Let the generalized forces corresponding to these coordinates in the 
Appell equations be QIP . . . , Q,+ 1. ‘lbt equilibrium state 

4% ,. . * ,~$n+l+k (2.1) 

will take place if the equations 

Qa+r = . . . = Qn = 09 Qj + 2 &,Bii + Ri$S + Nip,! = 0 

can be satisfied only for kpi > dt Riz2 + R . 2). Let also in any equa- 
tions of motion, derived for sufficiently ma ‘I 1 variations of the co- 
ordinates and velocities, the normal reactions N,” and the tangential 
reactions R& and R’. my satisfy (1.5) and.tl.6). ‘l&s means that-if 
arbitrary instant t* the _txpression viz + v. 2 ’ 

IS reduced to zero, 
it will remain zero for all t > t*, until & motion will abaadou 
small neighborhood of the equilibria state. 

Let &+ ]i* ***t Q, be dependent only on the coordinates and in 
vicinity of (2.1) satisfy 

at any 
then 
SOIW 

the 

where Ii is a holomorphic function of all coordinates in (2.1). 
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The coordinates go+ 1, . . . , qn we shall call free coordinates, and the 
remaining quasi-free and being inside of the stagnation region. This 
terminology facilitates the formulation of the theorem below. 

fieorem. If U,, the expansion of the function II in powers of the vari- 
ations of the free coordinates only, starts with a quadratic negative- 
definite form in respect to its variables, and the quasi-free coordinates 
are inside of the stagnation region, then such equilibrium is stable. 
Moreover, the excitation will reduce over a finite period of time to un- 
damped small vibrations of the free coordinates only. Besides, this 
motion will be such as though some additional ideal constraints were im- 
posed on the system expressing the constancy of the non-free coordinates 
when the latter differ very little from their values at the equilibrium 

state. Indeed, 

Consider 

dM d 

dt=dt [T-U-t x (g)OXi+ 2 PiXi’]= 
i<a kg.0 
i>n i>n 

= i Qiii + i Qivi - x kiNi vu,’ + vivz -T + 
i=a+l i=l 

where (dU/dq i)” are considered to be positive at equilibrium, and /3 > 0 
is some constant. If /3 is taken sufficiently large, then W will be 
positive-definite. 

Indeed, T is positive-definite with respect to the velocities and 

W- T = $J 7i;xixj + ~~i~xixj + 2 pixi2 + Y 
i j=a+l iga 

i>TI 

where the second sum contains the terms of the second order which depend 
on the variations of the quasi-free coordinates, and Y contains the 
terms of the higher order. ‘Ibe first sum is positive-definite by defini- 
tion with respect to its variables; and an arbitrary diagonal minor hk 
of the order k > u - n of the quadratic part of W- T has the form 



Stability of equilibriur states 13 

and will be positive for sufficiently large t3 > 0. Note also that, from 

the definition, all velocities of the quasi-free coordinates are linear 

in ul, . . . . u. and the time derivative of W can be expressed as 

where all pi vanish at the e~ilibri~ state. In a similar manner as it 

was done in the preceding section, it can be concluded that dW/dt is a 

negative constant, and thus, the motion is stable. 

Let S, the energy of the acceleration of the system, be represented as 

S = S, + blhl + . . . + b,& t_ S, 

where S, is a part depending on the squares of the acceleration, S, is a 

part deknding linearly on the accelerations; b,, 

at the equilibrium state. The equations of motion 

the form 

*.., b, are vaniihing 

may be represented in 

If a,,,, **-, +, are determined from the last 

substituted into the first u equations, we obtain 

asa 
aej 

= - bj + Qi (2.2) 

n - o equations and 

where b . ’ vanish at the equilibrium 

. ..) ii,‘are replaced by tl,, . . . , gw 

Indeed, 

state and S,* is S, where l$,_+ 1, 
from ~~~/~~j = 0. 

where (dS,/& j) l is (c3S,/aGj) in which the last n - B relationships of 

(2.2) are taken into account, All terms on the right-hand side of the 

last equality which are independent of fij will vanish at the origin of 

the coordinate system; and all terms depending linearly on v 

such as though we put. aS,/aqj = 0. 

j will be 

Since 



14 C.R. PozhoritrCii 

.*=+g: *’ QjViVj 

il==l 

is a positive-definite function of 3,, . . . , ids, then after multiplying 

(2.2) by vi and adding, we obtain 

d 1 -- 
dt 2 z 

QjVtVj = i,&$ _- ViVj + 2 (Qj -bj’)Vj - 

-~ktlVtVQTQ=~(Qj + Pj’)Vj -_hNt Vs; 

where all pi’ vanish at the equilibrium state. Replacing the first part 

of the last equation by a larger value.- 8 \j(Xaijuiu .), as it was done 

in the first section, (this is permissible because o f’ the stability of 
the motion (1.5) and (1.6)), we conclude, that the quasi-free coordinates 

vanish after sane finite interval of time. Mechanically, this means that 

during the process of motion some small forces are acting on the compo- 

nents of the system corresponding to nonfree coordinates from the other 

components of the system. These forces, however, cannot move the nonfree 

part of the system away from the stagnation region. 

‘Ihis is apparently a manifestation of an essential difference between 

the dry and viscous friction. It is known that introducing partial dissi- 

pation by means of the forces of viscous friction results frequently in 

the asymptotic stability of equilibrium of a system at the minimum of 

potential energy, provided that there are no several equal natural fre- 

quencies of the system. ‘Ihe damping process is infinitely long, and the 

energy of the undamped memhers is transmitted to the damped members and 

thus is dissipated. 

‘Ibe dry friction forces, generally speaking, are capable of the dissi- 

pation only of a part of the energy of a system, moreover, the damping 
of the members with dry friction takes place during a finite period of 

time. 

This is so because the dry friction forces are discontinuous functions 

of the velocity and remain undetermined for zero velocities; they may 

manifest themselves as the reactions of ideal constraints, since they do 

not work along ‘any relative, admissible displacements of the contact 

points. The conversion of this theorem is not difficult. Indeed, the 
quasi-free coordinates, if the initial excitation did not disturb these 

coordinates nor their velocities, will remain constant, and motion of 
the system will be equivalent to a motion with additional constraints, 

at least in some neighborhood of the equilibrium state. If for an t- 



Stability of egailibrium states 15 

neighborhood, entering in the determination of the equilibrium, we select 

an even smaller neighborhood, then the motion will be a motion with addi- 

tional constraints for such a neighborhood. 

Consequently, if the expansion of II starts with a quadratic form which 

changes its sign, or a positive-definite form of the order 2m, or it re- 

presents a form which changes the sign, then invoking the known theorems 

of Liapunov [?I and Chetaev [81, we come to the conclusion that the 

system is unstable in relation to the free-coordinates. 

We also note that if the conclusion of the stability of the equi- 

librium would be obtained by imposing some other structural limitations 

on the forces, then the damping of the vibrations of nonfree coordinates 

will also take place within a finite period of time, since in the proof 

of this fact we used only the stability conditions. 
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