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painlevé [1] in his book Lectures onm Friction showed that the addition
of dry friction forces does not alter the stability of equilibrium states
of mechanical systems, for which the potential energy at the equilibrium
state has an isolated minimum. In [2] and [3] a problem of stability of
stationary motions of some particular mechanical systems with dry fric-
tion has been investigated: Some properties of the systems were deter-
mined such that the addtion of the dry friction forces does not affect
the stability of the motion, provided that the systems are stable when
subjected to the action of potential forces only. In (2] and [3], bowever,
only such frictional forces are considered which appear during the
sliding of the surfaces and which result in constant moments i+ B, inde-
pendent from the normal forces (the forces are acting in the opposite
direction to the relative sliding velocity). Such a model of dry friction,
obviously, differs from the classical Coulomb model. It may, however,
serve as a step toward the study of the problem in its classical formula-
tion. The present paper is devoted tc such a study.

1. Consider a mechanical system subjected to stationary holonomic
ideal constraints with the coordinates q,, ..., q,, ke U and to non-
holonomic scleronomous (aAij/at = 0) ideal constraints

Ailél + ..o+ Ainsrn éﬂ‘bk-ﬂ =0 (i=1,..., 4k

with admissible displacements

Aiudg + .o v F+ Ainikii0qniax =0 (i=1,...,%

Let on the system be imposed some releasing constraints with dry

friction
Qn+1<09 » 53y Onil <0
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If these inequalities reduce to equalities, then the bodies, or the
points of the system, or external surfaces are sliding over other bodies
of the system or over the external surfaces. Moreover, the frictional
force remains proportional to the normal reaction N; > 0 and is acting
in the opposite direction to the sliding velocity (N; > 0 if the bodies
are pressing on each other).

Let us select at each contact point of one body three axes fixed on.
this body. Let the axis z; be directed along the external normal and the
axes x; and y; complete a right-handed, orthogonal system of coordinate
axes. Thus, the work of the reaction N, and the frictional force along
the allowable displacements 8x;, 8y;, 6z; of the points of the second
body in this reference frame will be
v, s
Nybzy — IglNg o= 82y — kilV; - &

i ¥ § lv1] ] 1 ‘l’vil y‘i
where v, and v; are x- and y-components of the relative velocity vector
V, and &; > 0 are friction coefficients.

In all subsequent considerations we shall not mention the fact that
for the determination of the position of a system it is necessary to
specify n + 1 + k coordinates, although for the determination of the dis-
tribution of the velocities, it is necessary to specify only n + [ velo-
cities. We shall also consider, without stating it explicitly, that all
coordinates can be subjected to arbitrary excitations, although, perhaps,
the length of the trajectory along which a system can be transferred
from the initial state to a given excited state, remains bounded from
below with the unlimited decrease of the amplitudes of some initial
excitations. This can occur because of the existence of nonholonomic con-
straints. Such an assumption is necessary in view of the fact that we
are not considering either the causes or the duration of the process of
the build up of the excitation. We do not register therefore these
assumptions in the indices, which simplifies the notation.

Let the allowable displacements 8x,, 8y;, 8z; be expressed by the in-
dependent displacements 8q,, 8q,, ..., 8q,, ; as follows

Ox; = alidg, + .. . +al,, Oqnu
Syi = o2 bq, + ... + a2 ,8qn,
8z; = aif‘nﬂﬁqnﬂ + ...+ aiﬁméqmz

where index i varies over all contact points, and the last expressions
do not contain 8q;, ..., 8¢, since all 8z, =0 for

69ﬂ+§=qn+j=én+j=0 (=n4+4,....,04+D
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The velocities v, and Viyr being independent of time, are expressed

in ¢y, ..., dny 1 by similar formulas:

Vie =0lqi + .. T @
vy =0ajq + ...+ a2 . ns
Zi; =08 Gna+ ...+ 03 gnu

Let us consider first the systems with a complete dissipation, i.e.

for which the velocities v; and Viy reduce to zero when §,=...=¢,=0.
Consider thus a system with the initial conditions ¢} = ¢,, ;= 0;
98,1=---=q% ;= 0. The components of the frictional forces R; and

R,  in these initial conditions at equilibrium could be arbitrary, but
such that their magnitudes \/(Riz2 + Biyz) should not exceed kN.. The
system remains in equilibrium if the sum of all virtual works of active
forces Q; (independent of t and continuous), of the frictional forces
and positive normal reactions N; can be made, by a proper selection of
R, and R , equal to zero for any virtual displacement of the system,
(R;, and R, must be the same for any virtual displacement). Thereby the

following must be satisfied
05,+ZRixa}j+Riya?j+N(a?j= G=1,...,n4+1 ('1.1)

where Q.” is the generalized force from the Appell equations [4], corre-
sponding to the nonholonomic variable qj.

It may occur that in (1.1) there are more unknowns then the equations.
In this case we shall impose on the solutions of these equations addi-
tional conditions which guarantee equilibrium.

1. Equations (1.1), (together with some additional hypothesis about
the properties of N;), can be satisfied only by the positive normal re-
actions.

2. For an arbitrary system of normal reactions N; > 0 it is possible
to determine a system R, , R; such that all R, , R, and N, together
. A 2 Yy 2 2 2 ix ty 1
will satisfy (1.1), and R, ° + Riy < k;“N;*.

A natural additional hypothesis about the distribution of the normal
forces may follow for instance, from the following considerations. A
rigid body pressing on a rough horizontal flat surface in the form of a
regular polygon exerts on this surface uniformly distributed force,
directed down, if the mass of the body is symmetrically distributed
about the vertical line passing through the geometrical center of the
flat surface. Let now the additional mathematical hypothesis be expressed



6 G.K. Pozharitskii

in the form of equalities or inequalities as follows

\_{P‘ (q‘h q.'b Qf! Ni’Rixi R{y) > 0
Ps (qh qi Qh Nh Ri:u Riy) =0

where ¥ and ¢ ¢ are continuous functions of their arguments, moreover,

the arbitrary quantities N i Ri x and Bi’ determined from the equalities
in (1.2) are continuous functions of the remaining arguments of ¢, In

the sequel we shall assume, without stating explicitely, that these re-
lationships are attached to the equations of motion or equilibrium. If

the initial conditions qi)-, ceer 904 143 2TE such that for arbitrary

N; > 0, it is possible to find R, * + R, } < k,’N.?, then clearly, the
same properties will obtain in some ¢ -neighborhood of the initial con-
ditions g;

(s=1,2,...p) (1.2)

ntk+1 ntk+1

D —gor = Dz

i=1 $=1

Let the initial conditions be such that some, and not all, relative
velocities are zero. Among the nonzero velocities there exist ¢, and not
more independent among themselves velocities, Vi eees Y, . Let vy, ...,
v, represent a complete system of nonholonomic coordmates independent
for ql, qn+ U dps1= 9ny 1= 0. Let now S be the acceleration energy
of the system depending on ! + n coordinates v,, ..., v, Vpygr coes

Vi I and their time derivatives, and let Q be generalized force cor-
responding to these coordinates.

Let
w = BLo + ...+ Bl

vy =PRva 4 ...+ B

Vi, = ﬁ?_nﬂ Vnyr oot Bunninn

The equations of motion then are

o5 . 2N Vi B35t + 95, B45° + SURGBL + RifBi;® + NB2)
a'vj —-QJ"“Zi i m' Z xty; wyPij i35

G=1yee.,n+1) (1.3)

where the first sum is extended over all contact points with nonvanish-
ing V;; the second sum over all contact points with vanishing V;, and
the thu'd over all points. In what follows we shall always presuppose
the above and we shall not indicate to the ranges of variation of the
index t.
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Solving (1.3) for ¥

o+ 1’ °°

s Upso Gnyps +++» Gpy 1 and equating the
results to zero, we get

n4-1

v, B 4o, B;,2
; 8 — XMy ty Fiy
2 1@ — 4 — BrN = St

E(Ruﬁl +Rmf52 + DN =0 ("=o+1,..n+)  (1.4)

where S, = 8,9, + ... +8_, 9, is a part of S linear relative to 2

If the system (1.4) together with the hypothesis (1.2) could be
sat1sf1ed only by a system N;, R, and Riy subjected to the inequalities
>\/(B 2+R 2) thenb i , are zero and ¥,, ...,
v are found from

= Q 4+ 2 kiV; ————-———] L =1, ...,
(61)5 ) i Z i ,/__———_”fx'f"’fy (I c)

These quantities will be determined uniquely if and only if, all
linear combinations N, > 0 appearing on their right-hand side, are deter-
mined uniquely from (1.4) and (1.2).

o+ 10 00 Vng ks

A situation is more complicated if it is impossible to satisfy all
inequalities

kiN;: > V Ri:® + Ry?

In such cases the assumption ¥,  ; = = 0 has to be dropped, and
substituted by the assumption that some of the relative accelerations
Uy 10 +-+s b, are different from zero and that in these points the
frictional forces are directed opposite to the relative accelerations

and equal to kN..

If it is possible to satisfy the equations

a8 v, BY + v;, BY v5Bl; + v BY;
kN ) vy L kN J 17 +

:S ¢ P v&-ﬁv& 23 e s vrvu-kvw

+Z(B?,~Ni + D RixBy +RuBE)  (G=1....n+)

(where the second sum is extended over the points with nonvanishing Vg
) it is possible to satisfy the accelerations i, , = ... = i, =
.=1,, =0, and also only the reactions

Ni> l Rixa‘f'Rw

n+1=
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(at the points with v, = 0;y=0), thend, ., = ... =9 =0, and ¥,
.., U, obtained from these equations will comstitute an admlss1ble
system [5] It is interesting to note that for an arbitrary admissible

system v;, ..., ¥, the function

: 1 2

v; (05, By; -+ 24y B55)
Vit

= — 8, + 500 — SikiVs Vol 1 o8, — 2V

can have only positive values. For, multiplying (1.4) by 1 and adding,
we obtain

280 =0 >0

where S, > 0, a part of S, is quadratic in ;. Function II can be inter-
preted as "work™ of all active forces, frictional forces, and of a part
of the inertial forces applied to the system on its actual acceleration.
Another part of the inertia forces constitute inertia forces which would
be applied to the system if it were acted upon by the active forces for
which the accelerations ¥, would vanish.

Let us now analyze all systems with initial conditions q;°, v; such
that the absolute values of the velocities v, are sufficiently small and
have the following properties:

a) For qiq = 0, v, = 0 the following inequalities are satisfied
kN > VR + Ry — &'
where N, and R; are the solutions of (1.1).

b) For arbitrary small |v | # 0, |x;| # 0, the new reactions R"; ,
R’; and N;°, which are the solutions of any of the variants of (1.3),
satisfy

kN >, VR2+RE & (4.5)
' >VRI+ R (1.6)

where 86 > 0 is a small constant quantity.

If it is impossible to determine either N;, N, or R;”, R; uniquely,
then we shall consider, t.hat for an arbitrary system N:‘. 1t 1s possible
to determine a system R; , R, which will satisfy inequality (1.6).
Mechanically this means t.hat the normal reactions, at the beginning of
the sliding with small velocity, vary from their static values continu-
ously or make sufficiently small jumps.

The region of the initial values satisfying (a) and (b) above we
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shall call, following Bulgakov [6], the region of stagnation. We shall
prove below a theorem, which will also justify the terminology used here.

Theorem. An arbitrary equilibrium state inside of the stagnation
region is stable, and an arbitrary excited motion about this equilibrium
state, possessing an arbitrary small kinetic energy, will cease after a
finite period of time.

It is easy to note that each point of the stagnation region qio, qi°
is an interior point of the region, and thus, there exist a spherical

neighborhood
2 (g — g+ Ao <R

of such point consisting entirely of the stagnation points of the region.
For the left sides of any of the equations which serve to prove that a
given point is a point of a stagnation region, depend in a continuous
manner on q;, ¢;, and the inequalities in the condition (a) and (b) con-
tain some additional reserve §°.

Let us now consider any system of initial displacements and velocities

g’ — ¢ + 2o =z + o) <A>0
For sufficiently small A this motion could be considered as being

excited about its initial equilibrium state ¢;”, and further discussion
could be conducted considering the excitations of the velocities only.

From the theorem of the variation of the kinetic energy T we have
d . ,
@l =2(Q +8Q) vi— NV 22 +0,2
From (1.1) and (1.3) we obtain
d ’ ’
=T = Z(Rix Vix + Riyiy — kVi' V 02 + 0,2 )—- 21805y
We shall prove now that
Z(Rixvix -+ Rt’yviy — VY V”iﬁ + vilzl )-— 26 levj < — 0 VT 1.7)

in some region Exiz + v‘.2 < R, < R, where 6 > 0 is some constant, which
can be chosen independently from R, if only |R, | is sufficiently small.

Each term of (1.7) is negative in the region R, since
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(Hix + 8Qix) vix + (Riy + 80Q4) vy < kiNi’VUii + Uis

Here Q; is a generalized force corresponding the coordinate v, , etc.

Squaring both sides, we obtain

ix?

[(Rix 4+ 8Qix) vix + (Riy -+ 0Qu) vuyl® — BlV2 (w2 + v%) < 0

For the Sylvester conditions for this quadratic form in v, and vl
in sufficiently small R;, reduces to v (R; x2 + R,.Y) <k, N, -9,
to (1.6) since 3Q,, is arbitrary small because oi the com;mumy of Q

y!

Consider now lower limits of k;N;, denote them by (kiNi)°, and let p;
denote the upper limits of the moduli of &Q; in R;. The function

D = ZRixvix -+ Hiypiy (k N‘L)o Vv,?c -+ 7) +2 Wi [ [Z] (
i

clearly exceeds the left side of (1.7). It is a homogeneous function of
first order in v;. Consequently, if y is its negative maximum on the
sphere R, then everywhere in R,

_— ,.1.... 2 2
c13>+‘/7@.1/v1 + ... F o

Obviously, there exist always such R > R,, that for arbitrary inz
viz < R, the following inequality is valid

VT <o’ Vol+ ...+ vd
moreover, 0 < o = const is independent of R,. Thus

T=8VT

which completes the proof.

Hence

%T<——-8 VT 1in the region E a4+l Ry

If A is sufficiently small then T° is arbitrarily small, therefore,
for an arbitrary variant of the equations of motion

VT — VT <O2(t — to)
It is seen from the last equality that the motion is asymptotically

stable relative to the velocities, and it will necessarily cease after
some interval of time bounded above by L(A) > 0.
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It is also easy to demonstrate, that there exist such a constant
1(x) > 0 that the moduli of all v, satisfy

o] <= (VTP — 82t — 1))

From the last inequalities we obtain the following evaluation
2z | SUWT (E—t) — 6/4(t —1)* + C]

where [° > 0, C> 0 are some constants. All these evaluations are valid
as long as the motion is in progress, and it follows that the initial
equilibrium is stable.

2. Consider now a system with a partial dissipation. Let v,, ..., v,,
o < n be independent among all v, , Viys and let the frictional forces do
no work along the admissible displacements 3q_, ,, .. ‘Squ We also
assume that the eyuations expressing nonholonomic const.ramts are linear
in vy, ..., Yp-

As nonholonomic coordinates take

Uiy e o0y Ugy qa-'}'lr' <.y Qﬂa vn—i—b' vy yn—i—l

Let the generalized forces corresponding to these coordinates in the
Appell equations be Q,, ..., Q,, ;- The equilibrium state

Q%15 - ooy ik 2.1)
will take place i1f the equations

Qepr=---=Qa=0, Q;+ L RuBl+ RuBZ+ N3 =

can be satisfied only for kN, > V(R; 24 R, 2). Let also in any equa-
tions of motion, derived for suffzclently sm 1 variations of the co-
ordinates and velocities, the normal reactions N.” and the tangential -
reactions R}  and R’iy satisfy (1.5) and.(1.6). This means that if at any
arbitrary instant t* the expression "ii + v iz is reduced to zero, then
it will remain zero for all ¢ > ¢*, until the motion will abandon some
small neighborhood of the equilibrium state.

Let Q. ;. ..., Q, be dependent only on the coordinates and in the
vicinity of (2.1) satisfy

oUu
99541

= Qn

——‘“Qc-{-l)"'r aq

where U is a holomorphic function of all coordinates in (2.1).
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The coordinates Qo410 -+ 9, We shall call free coordinates, and the
remaining quasi-free and being inside of the stagnation region. This
terminology facilitates the formulation of the theorem below.

Theorem. I1f U}, the expansion of the function U in powers of the vari-
ations of the free coordinates only, starts with a quadratic negative-
definite form in respect to its variables, and the quasi-free coordinates
are inside of the stagnation region, then such equilibrium is stable.
Moreover, the excitation will reduce over a finite period of time to un-
damped small vibrations of the free coordinates only. Besides, this
motion will be such as though some additional ideal comstraints were im-
posed on the system expressing the constancy of the non-free coordinates
when the latter differ very little from their values at the equilibrium
state. Indeed,

D Qigi= 2 g = %“—Zﬂéli

i=0}1 i= o+1 i<o aqi
i>n
Consider
d au \°

=TV 3 ()t 3 pet]=

i<o i<

i>n i>n
o aU

2 (11‘11 + Z Qi — Z kN Vvix2 + v — ar +
1——a+1

—1—2 ( )ac1 , ZBZ T3

i<o ie
i>n idn

where (8U/6q .)° are considered to be positive at equilibrium, and 8> 0
is some constant 1f B is taken sufficiently large, then ¥ will be
positive-definite.

Indeed, T is positive-definite with respect to the velocities and

n
W—T= Z 1% -+ ZTijxixj + 2 Bizi? +Y
ij=o41 :i(u
i>n

where the second sum contains the terms of the second order which depend
on the variations of the quasi-free coordinates, and Y contains the
terms of the higher order. The first sum is positive-definite by defini-
tion with respect to its variables; and an arbitrary diagonal minor A,
of the order k> o ~ n of the quadratic part of W ~ T has the form
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Ak = An—cgk“n+6 + Ck,ﬂ~o+18k—n+cm1 4 ...

and will be positive for sufficiently large 8 > 0. Note also that, from
the definition, all velocities of the quasi-free coordinates are linear
in v;, ..., v, and the time derivative of W can be expressed as

aw ————
— = 2 (@i + ) v — kilVi Vou® + 0
where all g, vanish at the equilibrium state. In a similar manner as it

was done in the preceding section, it can be concluded that dW/dt is a
negative constant, and thus, the motion is stable.

Let S, the energy of the acceleration of the system, be represented as

S =28, +bwy+ ...+ bagnt S,

where S, is a part depending on the squares of the acceleration, S, is a
part depending linearly on the accelerations; b,, ..., b, are vanishing
at the equilibrium state. The equations of motion may be represented in
the form

885, 2, Byt + 23,845 a8
-,__,._b._l_Q.___ZkiN 4 v 2= b+ Q; (2.2
o, ! ! : V v+ v aq; ! i 22

If §,,4, -++» 4, are determined from the last n - ¢ equations and
substituted into the first o equations, we obtain

38y v, B + v, B2
2 b Qs — S kN, e T
dv; =2 Vvl + 7 °

where b j' vanish at the equilibrium state and S,* is S, where §, ;,
.++, §, are replaced by v;, ..., ¥, from 832/8@'}. = 0.

Indeed,

n

aSy" 38y \* a8, 9p;
a2
?; v; 1=t 993 97

where (652/61‘;.)‘ is (652/61'1).) in which the last n — o relationships of
(2.2) are taken into account. All terms on the right-hand side of the
last equality which are independent of ¥ will vanish at the origin of
the coordinate system; and all terms depending linearly on v f will be
such as though we put. 382/321‘}. = 0.

Since
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]

o 2 aiﬂ}lv.i

ij=1

is a positive-definite function of by, ..., U,, then after mltiplying
(2.2) by v; and adding, we obtain

d 1 1 da;; ,
oo D 4w = — = Y~ v+ 3 (Q5 —by) v; —
A v: + vi3=2(0i+l"i')”i — 2kiVi ) vty

where all p.” vanish at the equilibrium state. Beplacing the first part
of the last’equation by a larger value - 6 V(Za; jivj), as it was done
in the first section, (this 1s permissible because ofjthe stability of
the motion (1.5) and (1.6)), we conclude, that the quasi-free coordinates
vanish after some finite interval of time. Mechanically, this means that
during the process of motion some small forces are acting on the compo-
nents of the system corresponding to nonfree coordinates from the other
components of the system. These forces, however, cannot move the nonfree
part of the system away from the stagnation region.

This is apparently a manifestation of an essential difference between
the dry and viscous friction. It is known that introducing partial dissi-
pation by means of the forces of viscous friction results frequently in
the asymptotic stability of equilibrium of a system at the minimum of
potential energy, provided that there are no several equal natural fre-
quencies of the system. The damping process is infinitely long, and the
energy of the undamped members is transmitted to the damped members and
thus is dissipated.

The dry friction forces, generally speaking, are capable of the dissi-
pation only of a part of the energy of a system, moreover, the damping
of the members with dry friction takes place during a finite period of
time.

This is so because the dry friction forces are discontinuous functions
of the velocity and remain undetermined for zero velocities; they may
manifest themselves as the reactions of ideal constraints, since they do
not work along any relative, admissible displacements of the contact
points. The conversion of this theorem is not difficult. Indeed, the
quasi-free coordinates, if the initial excitation did not disturb these
coordinates nor their velocities, will remain constant, and motion of
the system will be equivalent to a motion with additional constraints,
at least in some neighborhood of the equilibrium state. If for an ¢-
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neighborhood, entering in the determination of the equilibrium, we select
an even smaller neighborhood, then the motion will be a motion with addi-
tional constraints for such a neighborhood.

Consequently, if the expansion of U starts with a quadratic form which
changes its sign, or a positive-definite form of the order 2m, or it re-
presents a form which changes the sign, then invoking the known theorems
of Liapunov [7] and Chetaev [8], we come to the conclusion that the
system is unstable in relation to the free-coordinates.

We also note that if the conclusion of the stability of the equi-
librium would be obtained by imposing some other structural limitations
on the forces, then the damping of the vibrations of nonfree coordinates
will also take place within a finite period of time, since in the proof
of this fact we used only the stability conditions.
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